Vibrational Spectra and Structure of $LiB^{2+}PO_4$ Compounds with B = Sr, Ba, Pb

MARIE-THÉRÈSE PAQUES-LEDENT

Department of General Chemistry, Sart Tilman-4000 Liege, Belgium

Received November 30, 1976; in revised form July 1, 1977

The vibrational spectra of $LiB^{2+}PO_4$ compounds with B = Ba, Sr, Pb are studied. Typical vibrations of LiO_4 and PO_4 tetrahedral have been identified. This work leads one to propose structural types to which the three compounds belong: LiBaPO₄ is isomorphous with orthorhombic LiKSO₄ while LiSrPO₄ is related to monoclinic RbLiSO₄; LiPbPO₄, with a more distorted structure, most likely contains lithium atoms with a tetrahedral coordination.

Introduction

 $LiB^{2+}PO_{A}$ (B = Sr, Ba, Pb) compounds have been reported in the literature (1, 2, 4). First, Wanamaker and Spier (1) have studied the luminescent properties of copper-activated Sr and Ba orthophosphates, but the crystal structures of the Sr and Ba compounds are not discussed. Nevertheless the samples of their two compounds do not correspond to pure orthophosphates. The X-ray diagrams of our samples which are obtained after short cookings, are similar to the published X-ray data. But the ir spectra show that no such samples correspond to pure orthophosphates. Our studied samples are submitted to prolonged cookings: We obtain pure orthophosphates without any increase of the maximal temperature (2). So far, the crystal structures of Sr and Ba phosphates were unknown.

Recently LiPbPO₄ single crystals have been prepared and an orthorhombic unit cell has been determined by Brixner and Foris (4). Our powdered sample corresponds exactly with their LiPbPO₄.

We have studied the ir and Raman spectra of the three compounds with the object of improving on the structural determination. On the basis of our X-ray powder diagrams and our vibrational spectra, it is indicated that $LiKSO_4$ and $LiBaPO_4$ have strongly related structures.

LiSrPO₄ is not isomorphous with LiPbPO₄, despite the fact that the ionic radii of Sr^{2+} and Pb^{2+} are virtually identical. For the three compounds, we propose tetrahedral coordination of Li atoms.

B. Experimental

Synthesis

All the compounds have been synthetized by a solid-state reaction between lithium carbonate, $(NH_4)_2HPO_4$ and BaCO₃, SrCO₃ or PbCO₃. The mixtures are slowly heated in corundum crucibles at various temperatures: 920°C during 3 weeks for LiBaPO₄, 950°C during 1 week for LiSrPO₄, 800°C during 2 days for LiPbPO₄ (4), with several intermediate mixings and grindings, particularly for the Ra compound. ⁶Li₂CO₃ is obtained from metallic lithium containing 95.68% of ⁶Li (by reaction between LiOH and pure gaseous CO₂).

Spectra and X-Ray Diffraction

The ir spectra have been recorded by a conventional pressed disk technique with a Beckman ir spectrometer (200–1000 cm⁻¹) and a Polytec FIR 30 interferometer (40–350 cm⁻¹). The Raman spectra were obtained with a Coderg PH O monochromator, equipped with a 50-mW He–Ne laser. The powdered sample is introduced into a glass capillary and formed into a cone which is illuminated along its axis by the laser beam. The scattered light is collected at a 90° angle. The X-ray powder diagrams are obtained with a C.G.R. diffractometer using CuK_a and CoK_a radiation.

C. Results and Discussion

1. X-Ray Powder Diagrams

The powder patterns for Sr and Ba compounds are shown in Fig. 1. The $LiBaPO_4$ diagram shows strong analogies with the orthorhombic phase of $LiKSO_4$ (3); the same is indicated independently by the vibrational study. Therefore, owing to the observed reflections, we propose for $LiBaPO_4$ an orthorhombic LiKSO₄ structure and the $C_{2\nu}^9$ space group with Z = 4. The cell dimensions are: a = 8.72 Å, b = 5.19 Å, c = 8.63 Å. The Sr compound is less symmetric. Its X-ray powder diagram shows many similarities with the monoclinic double sulfate RbLiSO₄ (3) whose structure is strongly related to the LiKSO₄ orthorhombic phase. The X-ray diagram can be interpreted assuming a monoclinic unit cell with C_{2h}^5 symmetry as for RbLiSO₄. LiPbSO₄ belongs to the $C_{2\nu}^9$ space group with eight formula units in the cell (4) but is *not* isomorphous with the Ba compound.

LiKSO₄ crystal structures. LiKSO₄ structures are built upon 3 LiO₄ and 3 SO₄ shared tetrahedra which form mixed rings, normal to the "c" axis (Fig. 2). This layer model forms big cavities available for larger ions such as K, Rb, and Cs. The orthorhombic phase (or phase II) of LiKSO₄ belongs to the $C_{2\nu}^9$ space group and all the atoms are located on sites with C_1 symmetry. Three adjacent tetrahedra are placed at the "up" position with regard to the "c" axis, the three latter at "down" positions.

Li BaPQ Li BaPQ Li SrPQ Li SrPQ

FIG. 1. X-Ray pattern of LiBaPO₄ and LiSrPO₄. Co K_{α} radiation,

FIG. 2. Tridymite (a) and Imma (b) structure types.

This structure type is a *Imma* structure type (Fig. 2b) and is also observed for other compounds: $RbLiSO_4$, $CsLiSO_4$, $RbLiBeF_4$, $CsLiBeF_4$. The hexagonal phases of $LiKSO_4$ (I and III) show mixed rings with alternately "up" and "down" tetrahedra. They belong to the tridymite structure type (Fig. 2a).

2. Infrared and Raman Spectra

 $LiBaPO_4$. An obvious analogy exists between the ir spectra of LiKSO₄ (5), CsLiSO₄, and of LiBaPO₄, not only in the spectral range 550–1200 cm⁻¹ assigned to internal bending and stretching modes of sulfate or phosphate ions, but also in the range below 550 cm⁻¹. The vibrational representation related to the LiKSO₄ orthorhombic crystal is: $\Gamma_{vibr} = 20A_1 + 21A_2 + 20B_1 + 20B_2$ (Table I). A_2 modes are infrared-inactive

In our ir experimental data, the most interesting features are the strong isotopic mass effects observed when ⁶Li substitutes ⁷Li: between 400 and 500 cm⁻¹, large shifts appear, while the other two bands (above and below this region) are weakly displaced (Table II).

These frequency shifts allow one to indentify unambiguously the vibrational modes involving motion of Li atoms (6). Moreover, the narrow frequency range (400–500 cm⁻¹) where such modes are observed, indicates a tetrahedral coordination of lithium. This last inference confirms the X-ray powder study.

Between 550 and 700 cm⁻¹, the bands correspond essentially to the PO₄ antisymmetric bending modes, while between 900 and 1200 cm⁻¹ appear the stretching PO₄ modes. We see at 958 cm⁻¹ one weak component from the symmetric stretching mode v_1 . In the low-frequency region, the three bands correspond to lattice modes with motion of heavy Ba atoms.

VIBRATIONAL CORRELATION	TABLE I n Diagram: C ⁹ _{2v} Symmetry	Space Group, C_1 Site
$LiKSO_4$: 4 (= <i>n</i>) equivalent	sets of each atom. I sets of each atom	$LiPbPO_4$: 2 × 4 equivalent
Site group C_1 n=4	Correlation	Factor group $C_{2\nu}$
$(x, y, z) A (\times 4)$ -		$A_1(\mathrm{ir}, \mathbf{R})$
		$A_2(\mathbf{R})$
		$-B_1$ (ir, R)
		$-B_2$ (ir, R)
$LiKSO_4: \Gamma_{vibr} = 20A_1 + Z = 4$	$21A_2 + 20B_1 + 20B_1$	3 ₂
$LiPbPO_4: \Gamma_{vibr} = 41A_1 + Z = 8$	$42A_2 + 41B_1 + 41B_1$	B ₂
Internal modes: XO ₄ tetrah	edron	
Molecular point group	Site group C_1 n=4	Factor group $C_{2\nu}$
$A_1(v_1)$	$A(\times 4)$	$A_1 + A_2 + B_2 + B_1$
$E(v_2)$	$2A(\times 4)$	$2A_1 + 2A_2 + 2B_1 + 2B_2$
$T_2(\nu_3,\nu_4)$	3A (×4)	$3A_1 + 3A_2 + 3B_1 + 3B_2$

ir (cm ⁻¹)		<u></u> ,, <u></u> ,,, <u></u> ,,, <u></u> ,,,,,,,,,		Raman (cm ⁻¹)				
⁷ LiBaPO₄	⊿ _{isot}	[€] LiBaPO₄	Assignments	⁷ LiBaPO ₄	⊿ _{isot}	⁶ LiBaPO₄	Intensity	
64		64)	[107			w	
82	+1	83	Lattice modes with	J 168			m	
			motion of Ba atoms	259			vw	
154	+6	160	ļ	398 sh	7	405 sh		
	+6	426 }	Internal $\nu_2(PO_4)$	{ 424		424	vs	
420	+35	445	Vibrations related to	[
463	+24	487	the internal LiO ₄	{ ~455	~18	473	vw	
482	+28	510	modes)		
				(570	6	576	s	
572	+1	573	Internal v (PO)	\$ 580	5	585	s	
587	+5	592 J		600 sh		600 sh		
958		958 }	Internal $v_i(PO_4)$	(930.5			vw	
				{ 954			vs	
~1037	~+2	~1039 }	Internal modes	(1021.5			m	
			v ₃ (PO ₄)	{ 1033.4			m	
				L 1108			w	

Frequencies, Isotopic Shifts, and Assignments for LiBaPO4. Infrared and Raman

FIG. 3. Infrared spectra of $^{7,6}LiBaPO_4$ and $^{7}LiSrPO_4$.

FIG. 4. Raman spectrum of LiBaPO₄. Slit = 2 cm^{-1} .

Owing to the values of the observed isotopic shifts, it is clear that the vibrational interactions between the modes related to the internal SO_4 and PO_4 vibrations are those related to the next LiO₄ groups, are weak in this structure. Moreover, the quite similar pattern of the ir spectra for hexagonal LiKSO₄, CsLiSO₄, RbLiSO₄, LiBaPO₄ between 300 and 1200 cm⁻¹ indicates the vibrational modes in these cases to be weakly sensitive to the mixed rings symmetry.

Only a few frequencies are available from the numerous predicted active modes but we observe many coincidences between the Raman and ir frequencies. This is in accord with a noncentered crystallographic unit cell and confirms the $C_{2\nu}^{9}$ space group.

The ⁷Li-⁶Li isotopic shifts led to the

FIG. 6. Raman spectrum of LiPbPO₄; 50 to 150 cm⁻¹: slit = 1 cm⁻¹, 150 to 1200 cm⁻¹: slit = 2 cm⁻¹.

following assignments in Raman. The strong peak at 424 cm⁻¹, is unaffected and assigned to the symmetric v_2 bending PO₄ mode; at 570 and 580 cm⁻¹ antisymmetric modes appear. The very strong peak at 954 cm⁻¹ is assigned to the A_1 component of the v_1 mode; at 930 cm⁻¹ we see another split component (with A_2 or *B* symmetry) of the v_1 mode; three other peaks between 1000 and 1150 cm⁻¹ are related to antisymmetric stretching vibrations.

From 398 to 500 cm⁻¹ we detect frequencies related to vibrations of LiO_4 groups in the mixed rings. As expected, the low polarizability of Li ions has as a consequence a very weak Raman intensity for the modes involving primarily vibration of Li atoms. Lattice modes with motion of barium atoms appear below 300 cm⁻¹.

 $LiSrPO_4$. This double phosphate has a more complicated spectrum; an obvious correlation appears between this one and the LiBaPO₄ spectrum but the lower crystal symmetry leads to observation of more bands, chiefly below 700 cm⁻¹ (Table III). For this reason the isotopic substitution does not allow simple assignments for the bands: Between 300 and 700 cm⁻¹, three bands are strongly shifted and correspond to translational modes with motion of lithium. The 576, 590 bands are essentially related to the $v_4(PO_4)$ mode, the

TABLE III

FREQUENCIES,	ISOTOPIC	Shifts	FOR	LiSrPO	1
--------------	----------	--------	-----	--------	---

$\varDelta_{\rm isot}$	7LiSrPO₄	⁰LiSrPO₄
	106	
	126	
	153	
	174	
	188	
	215 sh	
	233 sh	
~8	~270 ff	~278 ff
50	343	393
·	~405 sh	
7	428	435
6	468 sh	474
39	516	555
1	576	577
5	590	595
21	618	639
	948	948
~3	~1037	~1040

428 cm⁻¹ band being assigned to the $v_2(PO_4)$ mode. These assignments are very close to those of LiBaPO₄; nevertheless the vibrational interactions here seem to be stronger between antisymmetric bending PO₄ mode and Li–O vibration (see the 618-cm⁻¹ band). The breadth of the spectral region where characteristic frequencies of Li–O vibration are observed suggests very distorted LiO₄ tetrahedra.

Between 900 and 1200 cm⁻¹ we recognize one component of the $v_1(PO_4)$ mode (at 948 cm⁻¹); components of the $v_3(PO_4)$ mode appear in the same range as for LiBaPO₄ compound.

The many low-frequency bands correspond to lattice modes involving primarily Sr-O vibration. $LiPbPO_4$. The vibrational analysis for a $LiPbPO_4$ crystal with 8 units per cell, leads to the irreducible representation

$$\Gamma_{\text{vibr}}$$
: 41 A_1 + 42 A_2 + 41 B_1 + 41 B_2 .

The vibrational pattern shows no strong analogy with the former Sr and Ba compounds.

Isotopic frequencies and detailed assignments are listed in Table IV. We comment on some results. Between 500 and 1100 cm⁻¹ we observe the frequencies typical of internal modes of PO₄ tetrahedra; the band corresponding to the vibrational modes especially related to motion of lithium (see isotopic shifts) appears in the 400–525-cm⁻¹ range. That allows us to propose tetrahedral coordination for the Li atoms in LiPbPO₄ and so

ir (cm ⁻¹)				Raman (cm ⁻¹)				
⁷ PoPbPO₄	⊿ _{isot}	°LiPbPO₄	Assignments	'Li	PbPO₄	$\varDelta_{\rm isot}$	⁶ LiPbPO₄	Intensity
71		71)						
75		75						
93		93		٢	27		27	
115	1	116	T atting mades		51 57		37	
135		135	Lattice modes		57 71		57	vs
169		169	- involving primarily	$\left\{ \right.$	/1		71	V\$
~202		~202	Pb–O vibrations		94.5		94.5	VS
246 sh		246 sh		1	31		137	m
257 sh		257 sh		L 2	47		247	S
380 sh	~5	~385 sh						
405	5	410 }	Internal $v_2(PO_4)$	{ 3	95	-1.5	393.5	w
				$\int [$			408 sh	
		——	Modes related to	4	22	+11	433	w
443	16	459	internal Li-O	1 4	33	+12	455	w
482	26	508	vibration in the $Li - \Omega$ groups	4	82.5	+13	495.5	w
			LI-O4 groups	(5	60		5(0)	
580,	4	584 }	Internal $v_4(PO_4)$	$\begin{cases} 5\\ 5 \end{cases}$	82		582	m
				(0	 ><		562	
919		א 919 פו	Components of) 9	20			vs
964		964 ∫	$v_1(PO_4)$) 2	44 61			S
				\$ 9	01			s
~1000		~1000]	Components of	(10	15			w
1034		1034 }	$v_3(PO_4)$	{ 10	58			w
1062		1062 J		l 10	78			w

TABLE IV

Infrared and Raman Frequencies, Isotopic Shifts, and Assignments for $LiPbPO_4$

to resolve partly the structural model; without doubt this is the most interesting consequence of this study.

Two ir frequencies with quite distinguishable values, correspond to two components of internal $v_1(PO_4)$ modes and appear likely here in connection with the presence of two different sets of PO₄ groups in the structure, as required by 8 units per cell.

For the Raman spectra we are led to analogous assignments: All the peaks shifted by ⁷Li-⁶Li substitution appear between 400 and 500 cm⁻¹ and are assigned to LiO₄ modes. At ~408 cm⁻¹ and between 500 and 600 cm⁻¹ we observe, respectively, the symmetric and antisymmetric bending PO₄ vibrations. Peaks at 926, 944, and 961 cm⁻¹ correspond to internal PO₄ modes from the symmetric stretching vibration; above 1000 cm⁻¹ appear corresponding antisymmetric modes.

As for LiBaPO₄, many but no systematic coincidences, occur between ir and Raman frequencies, which is in accordance with the $C_{2\nu}^9$ space group. In ir and Raman spectra, we observe frequencies below 250 cm⁻¹ that correspond to lattice modes involving primarily Pb–O vibration.

D. Conclusion

A comprehensive survey of the vibrational assignments for the two nonisomorphous phosphates $LiBaPO_4$ and $LiPbPO_4$, shows that the different spectral regions (500–1100 and 400–500 cm⁻¹) receive quite analogous assignments. This last result comes evidently from the presence of heavy atoms (Ba, Pb)

next to the very light Li and P atoms, a situation that is favorable for the observation of the tetrahedral coordination of Li atoms.

From this study, the structure of LiBaPO₄ is now cleared up: LiBaPO₄ and orthorhombic LiKSO₄ are isomorphous, the tetrahedral coordination of lithium being established from ⁷Li-⁶Li isotopic mass effects in the vibrational spectrum. The structure of LiSrPO₄ is partly resolved because we have shown the connection between this structure and RbLiSO₄.

Finally, the vibrational data strongly support the tetrahedral coordination for lithium in $LiPbPO_4$.

On the whole, this work leads both to the resolution of a large share of the crystal structure for the three compounds and to the proposal of a rather detailed assignment of their vibrational spectrum.

Acknowledgments

We are indebted to the Fonds National de la Recherche Scientifique for a "Chargé de Recherches" fellowship.

References

- W. L. WANAMAKER AND H. L. SPIER, J. Electrochem., Sol. 109, 109 (1962).
- 2. M. TH. PAQUES-LEDENT, Ind. Chim. Belge 39, 845 (1974).
- 3. S. J. CHUNG, Dissertation, T.H. Aachen (1972).
- L. H. BRIXNER AND C. M. FORIS, Mater. Res. Bull. 10, 31 (1975).
- 5. M. TH. PAQUES-LEDENT, Th. Doctorat, Liège (1972).
- P. TARTE, Spectrochim. Acta 20, 238 (1964); 21, 313 (1965); Part A 26A, 747 (1970).